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Abstract 

A new multisolution method for direct phase determi- 
nation [Bricogne (1984). Acta Cryst. A40, 410-445] 
has been implemented and tested on small crystal 
structures. It consists of an organized search for those 
combinations of phases associated with a 'basis set' 
of reflexions which have maximum likelihood, i.e. 
which lead to the assignment of the highest condi- 
tional probability to the observed moduli belonging 
to reflexions outside the basis set. Phase choices are 
made sequentially, progressively enlarging the basis 
set, and the book-keeping involves a 'multisolution 
tree' which summarizes the parentage relations 
between them. The conditional probability distribu- 
tions (c.p.d.'s) of structure factors used in evaluating 
the likelihood are derived from joint distributions 
obtained by the saddlepoint method. The latter in- 
volves distributions of atoms which have the 
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maximum entropy compatible with all phase choices 
made, and hence are different for each node of the 
multisolution tree. These distributions qME are  con- 
structed numerically by exponentially modelling, 
coupled with a very robust plane search which often 
simplifies to a line search. C.p.d.'s of small numbers 
of structure factors not in the basis set are readily 
calculated from qME, with correct representation of 
their multimodality. A further 'diagonal' approxima- 
tion of these c.p.d.'s allows the log-likelihood to be 
written as a sum of contributions from individual 
non-basis reflexions. The phasing process is initiated 
by specifying the origin-fixing and enantiomorph- 
defining phases, and forming the corresponding qME. 
It progresses by roughly locating the maxima of the 
c.p.d.'s of additional structure factors by a magic- 
integer technique, updating qME separately for each 
such maximum, and evaluating their respective likeli- 
hoods. The most likely phase sets are further refined 
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by numerically maximizing their likelihood and are 
accepted as enlarged basis sets. This is a first approxi- 
mate implementation of a general Bayesian theory of 
phase determination [Bricogne (1988). Acta Cryst. 
A44, 517-545]. A companion paper [Gilmore, 
Bricogne & Bannister (1990). Acta Cryst. A46, 297- 
308] describes successful applications to the ab initio 
phasing of'small molecules, which demonstrate the 
viability of this new method and show that likelihood 
is far superior to any existing figure of merit in dis- 
criminating between correct and incorrect phases. 

O. Introduction 

This paper describes a first step towards the 
implementation of a Bayesian treatment of direct 
phase determination put forward in previous papers 
by one of us (Bricogne, 1984, 1988a, b; hereafter 
referred to as I, II and III, respectively). The work 
presented here aims at testing the most basic mechan- 
ism in this approach: the use of joint probability 
distributions of structure factors built recursively 
from maximum-entropy distributions of random 
atoms, driven by a tree-directed search for phase 
combinations which also maximize a likelihood 
criterion based on the values of the yet unphased 
moduli. This first paper gives a detailed account of 
the theoretical basis of the method, describes the level 
of approximation used and the algorithms developed 
to implement it, and outlines the principles according 
to which the process of phase determination is con- 
ducted. 

The theoretical basis of the present work is summar- 
ized in § 1. As previously discussed, its main novelty 
resides in the methods used to calculate the various 
probability distributions (I, §§ 2, 5), in the definition 
and systematic use of a likelihood criterion (I, 
§§ 4.2.2, 8.1; II, § 0.6; III, §4), and in the idea that 
phases can be refined by optimization of this criterion 
(II, § 0.6; III, § 4). Explicit formulae are given for 
the forms of conditional probability distributions and 
of likelihood functions which are invoked in the 
sequel. Attention is drawn to those properties of the 
exact expressions which are retained or lost at various 
levels of approximation, as this is of great practical 
importance in their subsequent use. A detailed pres- 
entation of the algorithms developed for the maxi- 
mization of entropy and likelihood and for other 
accessory calculations is given in § 2. The overall 
multisolution phasing strategy originally proposed in 
I, § 8.1, is then re-examined step by step and its 
practical implementation is described in terms of the 
previously established formulae and algorithms. 

A companion paper presents applications of the 
method to small structures, discusses the results 
obtained, and concludes that the proposed approach 
has been validated. 

1. Theory 

1.1. Joint distributions of structure factors 

Joint probability distributions (j.p.d.'s for short) of 
structure factors will be derived from the assumption 
that a crystal structure consists of a large number N 
of statistically independent equal atoms randomly 
distributed in the asymmetric unit with probability 
density m(x). If H = { h l , . . . , h , }  is a collection of 
unique non-origin reflexions, the corresponding uni- 
tary structure factors will be arranged as a vector 

UH= gh°/ 

and their joint distribution will be described by a 
probability density in structure-factor space which 
will be denoted @(Us). This is the usual starting 
point of direct methods, but the latter always make 
the further assumption that m(x) is a uniform distri- 
bution. 

In the present approach, the most radical departure 
from traditional direct methods is not in the definition 
but in the mode of calculation ofj.p.d.'s. The rationale 
for such a departure has been analysed elsewhere 
(I, § 2; III, § 2) and the modifications suggested were 
shown to yield better and more informative condi- 
tional distributions (I, §§ 2.3.1, 8.2) which constitute 
the essential tool of statistical phase determination. 
For a given set of phased structure-factor values 
U*~  0 containing large moduli, numerical approxi- 
mations to @(U) at or near U* will be calculated by 
means of the saddlepoint method (I, § 5). The latter 
is equivalent (I, § 5.5) to applying the central limit 
theorem starting from a modified distribution of 
atoms qMV(x) [instead of m(x)] which is character- 
ized by the property that it is the unique distribution 
which has maximum entropy 5P,,(q) relative to re(x), 
where 

~ m ( q ) = - - J  " q(x) log[q(x)/m(x)]d3x, (1.1) 
v 

and has Fourier coefficients U* for the collection of 
reflexions H. 

1.2. Conditional distributions of structure factors 

Let K be another collection of unique non-origin 
reflexions, disjoint from H, and let UK denote the 
associated vector of structure-factor values. The con- 
ditional probability distribution (c.p.d. for short) of 
UK, given that UH has the value U*, is defined as 

~ ( U r  UH=U*)=~(U*,UK)/@(U*).  (1.2) 

1.2.1. Gaussian approximation. It was shown in I, 
§ 4.2, that the maximum-entropy distribution of atoms 
qME constructed to evaluate 9~(U *) provides a means 
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of approximating this conditional distribution by a 
multivariate Gaussian with centre U~ E and covari- 
ance matrix QKK: 

I u .  = 
oc exp{--½(UK--uME)TQ~:(UK--uME)}. (1.3) 

Here, U ME is the vector of Fourier coefficients of qME 
which have been extrapolated from the data U* by 
the process of entropy maximization [I, §§ 3.4.2(2), 
4.2]; the covariance matrix QKK can be calculated 
exactly from the spectrum of qME via structure-factor 
algebra [see I, § 4.2.1, equation (4.6); II, § 0.6 and 
Appendix], and is essentially the Toeplitz matrix 
associated with qME (I, § 4.2.1). This approximation 
to the conditional distribution will be denoted 
 SP(u K I u .  = u * ) .  

The quadratic form in the exponent of the above 
formula may be rewritten (I, § 4.2.1) using Parseval's 
theorem, to give another approximation in terms of 
maps in real space: 

@s"(u,,: I u .  = u* )  

cc exp {-½N ~ {[(~q(x)J2//qME(x)} d3x}, (1.4) 
v 

where 3q(x) is the Fourier synthesis calculated from 
the coefficients UK - U ~  E (with symmetry expansion 
according to the space group of the structure under 
study). This new expression has the following very 
simple interpretation in real space: the role of the 
non-uniform distribution qME is to create a differential 
cost for the addition of new features at different 
locations in the unit cell, making it less costly (in 
terms of loss of conditional probability) to introduce 
new detail where qME is large than where it is small. 

1.2.2. Multimodality as a function of the phases. An 
important characteristic of the conditional distribu- 
tions above and of their approximate expressions is 
that, although they are unimodal when their argu- 
ments UK are unrestricted, they are multimodal func- 
tions of the phases {~k}k~ K when the moduli [U~[ are 
given fixed values. This is a consequence of the fact 
that, although ~sP is a convex function, the locus 
defined by the fixed moduli (a multidimensional 
torus) is non-convex. 

The real-space picture of c.p.d.'s in terms of 
differential cost provides an alternative illustration of 
multimodality: the contribution t3q of reflexions in K 
will correspond to a local maximum of@ sP if its peaks 
can be made to cluster near the maxima of qME; but 
this can in general be achieved for many choices of 
the phases ~'k- This picture makes obvious the follow- 
ing property: if qME contains only low-resolution 
modulations (hence few local maxima), the multimo- 
dality of the conditional distributions built from it 
will be less severe than if it contains high-resolution 

modulations (hence numerous local maxima). This 
remark has great practical importance (§ 3.2.0). 

1.2.3. Comparison with the Wilson distribution. To 
compare @sP with the usual distribution for U~: 
(Wilson, 1949, 1950), it is useful to recall that, for 
unitary structure factors in the equi-atom case, the 
quantity ,Y (the sum of the squared form factors over 
the contents of the unit cell) becomes ( I / N )  [see I, 
§ 4.2.2(1)]. The distribution ~sp is then seen to differ 
from the Wilson distribution in two respects: 

(i) it is centred around UK = U~ E, not UK = 0; 
(ii) its covariance matrix is QKK, not 1 / N  times 

the diagonal matrix of 'statistical weights' e. 
The Wilson distribution would actually be 

~SP(UK I UH = 0), corresponding to a uniform distri- 
bution of a t o m s  qME(x)  = 1 /V .  

1.2.4. The diagonal approximation. In this work we 
will use a cruder approximation than @sP to the c.p.d. 
of UK, called the diagonal approximation below, 
which consists of using as a covariance matrix 1 / N  
times the diagonal matrix of statistical weights (or e 
factors). Thus we retain the first-moment information 
U r  ME generated by the non-uniformity of qME, but 
discard the off-diagonal second-moment information 
associated with that non-uniformity. This decouples 
the various Uk's so that the resulting ~sp diag may be 
written as 

sP U ,  U*)  1-I sP ~D diag(U K = U ~/_./), -- = ~diag(  U k I U H  
k=K 

(1.5) 

each factor being a one- or two-dimensional Gaussian 
offset from the origin by U~ E. 

The diagonal approximation has the serious disad- 
vantage that it is unimodal, so that it is unable to 
represent the branching behaviour which introduces 
ambiguities in .the process of phase extension. This 
scrambling of the multimodal structure @sP is 
however less serious when the phases are integrated 
out to form conditional distributions ofmoduli  (§ 1.3) 
and likelihood functions (§ 1.4). The advantage of 
the diagonal approximation is that it yields relatively 
simple explicit expressions for these various distribu- 
tions, which we now proceed to derive. 

Let k be an acentric reflexion. Write 

Uk = Ak + iBk = I ukl exp (@k), 

and let 

dAk dBk = I ud dl Ud d~k 

be the plane measure in the corresponding copy 
of the complex plane. The conditional probability 
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distribution SP ~diag is then 
SP @d~ag(UklUH = U*) dAk dBk 

= (N/Trek) exp [ - ( N / e k ) l  Uk-- U~ E 2] dAk dBk 

=(2N/ek) l Uk exp{ - (N/o , ) [ l  Uk 2+ UkME2]} 

xexp[(2N/ek)  Uk IUr~ E 

xcos (~pk-- qyE)] d Uk d~k/2rr. (1.6) 

The conditional distribution of the phase ~k when 
I Uk is known is therefore 

P ( ~ k U . = U * , I U k  = Uk °bs) 

= [2rrlo(Xk)] -1 exp [Xk COS (~0k-- ~0~E)], (1.7a) 

where 
Xt = (2N/ek) Uk ob~ u~E.  (1.7b) 

In spite of all the approximations made, this 
expression already incorporates the use of the triple- 
phase relationship, as shown in I [equations (3.23) 
and (4.15)]. 

Let k now be a centric reflexion. The phase ~k has 
only two possible values, 7r apart, say Wk and Wk+ rr; 
the quantity cos (~k--Wk) is simply a sign, which will 
be denoted Sk. If d Uk denotes the line measure along 
the corresponding real line in the complex plane, then 
the equivalent of the polar coordinate relations is 

dUk=d  Uk½[6(Sk--1)+6(sk+ l)], 

where the sum of 6 functions (a discrete measure 
representing a choice of sign) is the centric equivalent 
of d~k/27r. It follows that 

sP = U * )  d Uk ~diag( Uk UH 

= (N/2  rrek)'/2 exp [ -  (N/2ek) Uk-- U ME 2] d Uk 

= (2N/Trek) '/2 exp {--(N/2ek)[I Uk 2 +[U~ E 2]} 

x exp[(N/ek) Uk IU ME SksME] d Uk 

x ½[6(Sk-- 1)+ 6(Sk+ 1)], (1.8) 

giving for the conditional distribution of the sign Sk 
when [Uk is known: 

P(SkUH=U*H, Uk =]Uk °bs) 

= [2 cosh (Xk)] -1 exp[XkSkS~E], (1.9a) 
where 

Xk=(N/ek)  Uk °bs U~ E. (1.9b) 

A straightforward adaptation to the centric case of 
equations (3.23) and (4.15) of paper I shows that this 
approximation, although crude, incorporates the use 
of the hyperbolic-tangent formula of Cochran & 
Woolfson (1955). 

1.3. Conditional distributions of moduli 

The calculations carried out so far convey the (cor- 
rect) impression that entropy maximization has a 

useful built-in ability to extrapolate phase informa- 
tion. Indeed, even in the case of the small protein 
crambin, very significant phase extension was shown 
to take place in conditions where direct methods are 
powerless (I, § 7.3). But, in this case, the starting 
phases to 3/~ resolution were exact, and the question 
immediately arose of knowing whether, in a real 
situation, errors in the starting phases would not be 
amplified so as to make the extrapolated phases 
worthless. In other words, maximum-entropy phase 
extension looks like an inherently divergent process, 
capable of some useful extrapolation from good start- 
ing phases, but perhaps incapable of refining bad 
starting phases prior to their extrapolation. This sec- 
tion will be devoted to showing that this is not the 
case: phase refinement is possible through the use of 
likelihood functions introduced in I (§ 4.2.2). 

The basic observation is the following: if we 
integrate ~I)SP(u K [U H =U@/./.) with respect to the 
(unobservable) phases in UK, we obtain a conditional 
marginal distribution for the (observable) moduli 
@SP([UKIIUH = U'H) which differs from the standard 
Wilson distribution of moduli, the latter being 
~sP(IU~ I U ,  =0). 

This consideration is of fundamental importance 
in the present work: through the use of the saddle- 
point approximation, phase choices for the 'basis' 
reflexions in H induce a deformation of the condi- 
tional marginal distribution of the moduli in K away 
from the usual (Wilson) distribution. In other words, 
the maximum-entropy extrapolation which relates 
U*H to U ME acts as a transducer, converting hypotheses 
about phase values in U* (which cannot be tested 
directly from measured intensities) into hypotheses 
about a change in the statistical distribution of the 
moduli UK[ (which can be tested). 

This transduction effect persists (although some- 
what weakened) even if we use the diagonal approxi- 
mation sa ~bdiag , because of the origin offset U ME. 
Explicit expressions for this level of approximation 
are easily obtained by integrating out phases or 
signs. 

For an acentric reflexion k the above derivations 
immediately yield 

SP diag([ Uk[ US  = U@/-/) d[ Uk[ 

=(2N/ek) Uk exp{--(N/ek)[ Uk 2+Iu~E2]} 

x Io[(2N/ek)lUk IU ME ] d Uk (1.10) 

[a distribution first derived by Rice (1944, 1945; 
reprinted in Wax, 1954) in another context], while 
for a centric reflexion 

SP ~diag([ Uk[ UH =U~)  dlUk 

= ( 2 N / ~ k )  '/2 exp {-- (N/2~k)[  Uk 2+ I U ~ I , ] }  

xcosh[(N/ek)  Uk [uME] d Uk]. (1.11) 
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1.4. Likelihood functions, likelihood ratios 

For the purpose of testing hypotheses, we use the 
customary likelihood criterion where the likelihood 
of a hypothesis is defined as the probability it assigned 
to the actual result of an observation before that 
observation was performed. In the case at hand, we 
therefore define the likelihood A of the phase choices 
in U* as the conditional probability of the observed 
values [UK [°b~: 

A(U* I IU,,I----IUKI °b~) ---- ~SP(IUKI°bs U,, -- U*). 
(1.12) 

In practice, it is convenient to normalize this quantity 
with respect to the null hypothesis (H0) that the 
distribution of atoms is uniform (i.e. that UH = 0) and 
to use the likelihood ratio 

A(U~IIuKI=IU~I °bs) ~sP(IuKI°b~ u , = u ~ )  
A(O IUKI=IUKI °~S) ~sP(IUKI°b~Iu. =0) 

(1.13) 
or its logarithm, the log-likelihood gain 

L(U~IIUKI=IUKI°bs) - -L(OIIUKI: IUKI  °b~) (1.14) 

where L = l o g  A. For brevity, we will often simply 
write A(U*)  or A(0) when the observation results 
used in forming the likelihood (here, UK = UK ob~) 
are unambiguously defined by the context. 

According to the fundamental work of Neyman & 
Pearson (1933), the likelihood ratio just defined con- 
stitutes the most powerful statistical criterion for iden- 
tifying the best set of phases for U* on the basis 
of the information IUK[ = UK obs. This criterion 
measures the extent to which the observed values of 
the yet unphased moduli UK ob~ are made more prob- 
able by the assumption that UH = U* than by the 
assumption that U ,  = 0. 

Explicit expressions for likelihoods are easily 
obtained in the diagonal approximation from the 
c.p.d.'s of moduli derived above. For k acentric, 

A (u*.ll Uk[--]Ukl °b~) 

= (2N/ek)  Uk obs 

Xexp{ - - (S / ek ) [ (  uk°bs)2+ ukME]2]} 

Xlo[(2N/ek) Uk °b~ I u~E  ] (1.15a) 

while 

A (Oll Ukl = l u,,I °b~) 
=(2N/ek )  Uk ob~ exp {-- (N/ek)(  Ukl°b~)/}. (1.15b) 

Hence 

A (U~ I I U,,I = I U,,I °bs) 
A ( O I I Ud = I U,,I obS) 

=exp {--( N/ ek)l U~EV'}Io[(2N/ e,,)l u,,°'sl u~E ] 
(1.15c) 

so that the global log-likelihood criterion from all the 
acentric moduli in K reads 

L ( U * ) -  L(O) 

= ~ {loglo[(2N/ek)lUk°b~lu~E] 
k,~ K 

k acentric 

- - (Nlek)  u~E 2}. (1.15d) 

Similarly, for k centric, 

A (U* I ud = I Ud °b~) 

=(2N/Trek) '/2 

x e x p { - ( N / 2 e k ) [ (  Uk °b~)2+ I ukME 2]} 

xcosh[(N/ek) lUk  °b~ U~ E ] (1.16a) 

while 

A (0 [Uk[ = I u,,I °b~) 
=(2N/~ek )  '/2 e x p { - ( N / 2 e k ) (  Uk[°b~)2}. (1.16b) 

Hence, 

A ( U *  [Ukl = I ukl °b~) 
A (0 I Uk[ = I ud obS) 

=exp{ - - (N /2ek )  U~ E2} 

x c o s h [ ( N / e k )  Uk °bSU~E[] (1.16C) 

SO that the global log-likelihood criterion from all the 
centric moduli in K reads: 

L ( U * ) -  L(O) 

= Z [ logcosh[(N/ek)  Uk °b~ U~ E] 
ka K 

k centric 

--(N/2ek) Uk ME 2]. (1.16d) 

Because the diagonal approximation has been 
used, these likelihood functions are sensitive only to 
the extrapolated moduli ]u~E], and not to the associ- 
ated phases. An exact expression for the likeli- 
hood, incorporating the full covariance matrix 
QKK(§ 1.2.1), has been derived by one of us (GB) 
and will be described elsewhere; it is sensitive to the 
extrapolated phases as well. Other forms of this likeli- 
hood function are suitable for diffraction intensities 
from fibres or powders rather than from single 
crystals. 

1.5. Phase refinement by Bayes's theorem 

The a priori probability @sa (U*) may be combined 
with the likelihood A (U*[IUK [ = ]UK lobs) by means 
of Bayes's theorem (see e.g. Lindley, 1965), yielding 
the a posteriori probability 

~post(u* [ Iu,, I= Iu,, I °~) 
~: ~S~(U*)A(U* [IUK I -- IU,~I °b~ ) (1.17) 
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whose maximization with respect to the phases in U* 
provides a procedure for phase refinement (II, § 0.6; 
III, pp. 68-72). It was shown in I (§ 4.2.2) and III 
(pp. 70-72) that this approach is an enhancement of 
the use of a 'quartet figure of merit' which can be 
implemented without any explicit manipulation of 
phase invariants. 

Using the approximation ~ 5SP (U~H) = 

exp [N~fm(qME)], it is clear that Bayes's theorem 
leads to consideration of the compound criterion 

Sb°r,(qME) + L(U*H I[UK[ = [UK[ °bs) (1.18) 

as the best discriminator between phase sets for U*/-t 
on the basis of the information contained in the 
observed moduli associated to H and K. 

In practice, L is often much more sensitive to U* 
than b°,,, especially at the early stages of phase deter- 
mination. As a result, we often carry out phase 
refinement by maximization of likelihood alone. 

1.6. Centroid extrapolated structure factors 

Once the trial phases assigned to the moduli U* 
have been refined by likelihood maximization against 
the unphased moduli U~ [ob~, the phase dependence 
of the conditional probability distributions ~sP diag 
(Ukl U ,  = U*),  which was integrated out in order to 
form the likelihood function (88 1.3 and 1.4), may be 
preserved and used to calculate the centroid value 
(Uk) of each structure factor Uk. These centroid 
values are analogous to the 'best' structure-factor 
values defined by Blow & Crick (1959) in another 
context, and have the property that they minimize 
the mean-square error in the corresponding maps 
caused by the residual phase uncertainties. 

Using the expressions derived in 8 1.2 for the condi- 
tional distribution of the phase ~k, we get 

(i) for k acentric, 

(Uk) = [Uk obs[ l,(Xk)/lo(Xk)] exp ( iq~ My) 

with 

Xk=(2N/~k ) lUk  °bs uME ; 

(ii) for k centric, 

(Uk) = ]Uk obs tanh (Xk) exp ( i ~  E) 

with 

(1.19) 

Xk = (N/ek)l Ukl °bs uMF[. (1.20) 

Maps calculated from this extended set of structure 
factors will show enhanced resolution without any 
new phase choices having been made. 

2. Algorithms 

2.1. Data preparation 

The conversion of structure-factor amplitudes 
(F[ 's) to unitary (I Ul's) and quasi-normalized ( E 's) 

amplitudes, together with the estimation of the associ- 
ated variances, is described in § 1 of the companion 
paper (Gilmore, Bricogne & Bannister, 1990). 
However, a remark on these two types of normaliz- 
ation is in order here. The normalization of IF['s to 
I U['s is appropriate for first-order statistics (e.g. 
expectation values), while that of [Fl's to IEl's is 
appropriate for second-order statistics (e.g. variances). 
Some blurring of this distinction occurs in conven- 
tional direct methods because the assumption of uni- 
formly distributed atoms causes the first-order 
expectation of each structure factor to vanish, leaving 
only a second-order (fluctuation) term to contribute 
to the intensity distribution. Here, the use of non- 
uniform distributions requires that this distinction be 
maintained. In all formulae derived in 8 1 of this 
paper, it is clear that second-order quantities involved 
as arguments of exponentials (or of special functions 
obtained by integrating out phases or signs) would 
be more simply expressed in terms of IEl's because 
of the presence of the statistical weight e. However, 
when we come to calculate maps for visual inspection, 
we use centroid maps (8 1.6) in which the weights 
involve IEl's but the coefficients are Iul 's .  In our 
opinion, E maps are a dubious hybrid in which 
second-order quantities (IE['s) are used to calculate 
a first-order quantity (the expectation value of the 
sharpened electron-density map): the statistical 
weight e has no rSle to play in the latter, and its use 
may induce substantial distortions in space groups 
of high symmetry. This viewpoint is supported by the 
occasional occurrence of crystal structures for which 
the E map is not interpretable while the correspond- 
ing F map is. 

2.2. The maximum-entropy equations and exponential 
modelling 

The hallmark of the multisolution approach used 
in this work (I, §8 2.4, 8.1) is the constant updating 
of the distribution q(x) of random atoms in the light 
of all the phase choices made. To serve as the basis 
for the calculation of saddlepoint approximations to 
j.p.d.'s and c.p.d.'s near the point UH = U * ,  q(x) 
must be the unique distribution qME(x) with 
maximum entropy b°,,(q) relative to the 'prior preju- 
dice' re(x) which would be used in the absence of 
phase assumptions. 

It was shown in I (83.3.1) that when q(x) has 
maximum entropy relative to m(x) under the con- 
straint UH = U* ,  then it can be represented exactly 
by an exponential model 

qME(x)=[m(x)/Z(m,w)]exp[w(x)], (2.1) 

where Z is defined in terms of m and ~o by 

Z(m, to)= .~ re(x) exp [to(x)] d3x (2.2) 
V 
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so that the division by Z automatically ensures that 
qMZ(x) is normalized. The to map is defined (e.g. in 
P1) by 

t o (x )=2Re  ~ ~ 'hexp(-27rih .x)  (2.3) 
h ~ H  

where the complex Lagrange multipliers ~'h are deter- 
mined by the condition that 

i qME(x) exp (+ 2rrih. x) d3x = Uh* (2.4) 
V 

for each h ~ H. 
A simpler exponential model [with re(x) a uniform 

distribution] was used by Collins & Mahar (1983) as 
a means of enforcing positivity, but the latter criterion 
on its own fails to justify the crucial property of the 
to map (equation 2.3) that it should have non-zero 
Fourier coefficients ~'h only for  h ~ H. This justification 
requires the maximum-entropy formalism developed 
in I, §§ 3.3-3.5. 

Equations (2.4) are referred to as the maximum- 
entropy equations, and several methods have been 
proposed for their solution (see e.g. I, § 7.1). We have 
chosen to use an algorithm based on an exponential 
model because 

(i) its computational complexity increases only as 
N log .N" for N reflexions, so that it can be applied to 
large structures; a Newton method (I, § 7.1.1), whose 
complexity increases as N 2, would be quicker for 
small ~c but would become prohibitively expensive 
for large N; 

(ii) the amount of storage required to hold a com- 
plete description of qME is minimal (two words per 
reflexion in H, to store ~'h); while algorithms such as 
that of Bryan & Skilling (1980) store qME itself as a 
map, which has to be highly oversampled in order to 
accommodate the extrapolated Fourier coefficients 
and is therefore very large. 

A naive algorithm for solving the ME equations 
by exponential modelling (I, § 7.1.2) consists of the 
following iterative procedure (written for P1 for sim- 
plicity), where the superscript (~ [not to be confused 
with i = ( -  1) 1/2 in the exponents] indicates quantities 
pertaining to the ith iteration: 

(a) to(°(x)=2Re ~ ~'~°exp(-2rrih.x) (2.5a) 
h e l l  

(b) q(i)(x) = [ m(x)/Z(m, to (o)] exp [ to(i)(x)] 

(2.5b) 
with Z given by (2.2) 

(c) U(h ' )= j" q(~)(x) exp (+27rib. x) d3x (2.5c) 
V 

(d) 6q(')(x)=2Re 2 [ U*-U(')] 
h ~ H  

x exp ( -  27rih. x) (2.5d) 

(e) 6Sr(h i)= J" [(~q(i)(x)/q(')(X)] 
V 

× exp (+27rih. x) d3x (2.5e) 

( f )  ~'(h'+')=~'(hO+6~'(h ° fo rh~H.  (2.5f) 

General space-group symmetry is readily incorpor- 
ated into the Fourier synthesis step (a). Note that the 
correction 6to ( i) = to ( i+ , ) _ to ( i) is related to 6q( ~)/ q ( ~) 
by the operation of selecting only those Fourier 
coefficients with indices in H. In the sequel, this 
operation will be called spectrum truncation and will 
be denoted 7",. 

This naive algorithm tends to be very unstable, 
because the division operation in step (e) gives rise 
to uncontrollably large shifts as the dynamic range 
of q(O increases. 

2.3. A robust exponential modelling algorithm 

The exponential modelling technique used in this 
work was developed by one of us (GB) specifically 
for entropy maximization and was used for phase- 
extension calculations on crambin (I, § 7.1.2, and 
unpublished results of GB). The inherent instability 
of the na'/ve algorithm is brought under control by 
the use of a plane search to guard against excessive 
shifts. This technique will now be described in some 
detail. 

2.3.1. Calculation o f  functional derivatives. In the 
forthcoming calculations we will frequently vary the 
'map' to(x) (or equivalently its Fourier coefficients 
~'h) so as to optimize some functional expression (call 
it F[q])  depending on the 'map' q(x) or equivalently 
on its Fourier coefficients. For this purpose we will 
need to calculate functional derivatives such as 
OF/Oq(x) and aF/Oto(x),  which will sometimes be 
denoted VqF and V,,F, respectively. Their definition 
is the continuous analogue of ordinary partial deriva- 
tives: for instance if q(x) is varied by 6q(x), then the 
corresponding variation of F is 

3 F =  ~ [OF/Oq(x)]6q(x)d3x = (VqF,  3q), (2.6) 
v 

where the angle brackets ( . ,  .) denote the scalar prod- 
uct of two real-valued functions. To compute V,oF 
when VqF is known, it suffices to note that if to(x) 
varies by 6to(x), then q(x) varies by 

6q(x) = q(x)[ 6to(x)-  6(log Z)]  

= q(x)[&o(x)-  (q, 6to)] (2.7) 

and therefore 

6 F = ( q V q F ,  6 to) - (q ,  VqF)(q, 6to) (2.8) 

or equivalently 

(V,oF)(x) = q ( x ) ( V q F ) ( x ) - ( q ,  VqF)q(x) .  (2.9) 

The second term in each of the last two formulae is 
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a correction term which keeps q(x) normalized as 
(o(x) varies. 

2.3.2. Plane search algorithm. The algorithm used 
in this work overcomes the inherent instability of 
na'ive exponential modelling by means of two 
modifications. 

(i) The optimal corrections 8~r~) [or, equivalently, 
the optimal 6(o(~)(x)] are sought not under the 'hard'  
constraint U ,  = U* but under a softer constraint 
defined in terms of a X2-1ike statistic c¢. This relaxa- 
tion is introduced to allow for the existence of 
measurement errors in the moduli U ,  ob~ and of 
errors in the trial phases associated with them in U*H. 
The statistic c¢ is modelled somewhat heuristically 
after a log-likelihood, in keeping with the remark at 
the end of § 1.5; its precise definition is as follows: 

1 IUh-- Uh* 2+1 ]Uh-- U*] 2 

h acentric h centric 

where tr2h is the estimated variance of lUh°bS and 
where initially 22~ =~¢ = 1 / N  (the parameters ~ 
and Z~ are subsequently refined, see § 2.4). 

(ii) Another search direction [besides 
TH(6q(°/q(~))] is used to temper the build up of 
contrast in q(i). Together, these two search directions 
span a plane, in which the optimal corrections are 
sought by constructing simultaneous bicubic models 
of the entropy b ° and of the constraint qg. 

2.3.2.1 Search directions. Consider the ith cycle of 
the iterative determination of qME(x), starting for 
instance from q(°)(x)=m(x) or equivalently 
(o(°)(x) =0. 

For the purpose of decreasing c8 we use a search 
direction A,(o (° analogous to the direction 
TH(6q(~)/q (~)) defined by steps (d) and (e) above, 
but incorporating the weights present in c8; the sub- 
script t indicates that the coordinate along this direc- 
tion in the search plane will be called t. Thus we define 

I T* ~ I T (i) 
(d') aq(')(x)=2Re ~ ~" -Y---" 

.~ z-z e . 2  + o'~ 

x exp ( -27r ih .  x) (2.5d') 

with ~ = 2 ; .  or 2 = Z ~  according to whether h is 
acentric or centric, 

(e') a~,~,)_ - f aq")(x) q(i)(x) exp (+27rih. x) d3x, 
v 

(a') Atw(i)(x) = 2 Re Z Asr(hi) 
h~H 

(2.5e') 

× exp (-27rih.  x), (2.5a') 

where it is understood that the Fourier summations 
in (d') and (a'),  written here for P1, must incorporate 
any space-group symmetry which may be present. 

To control the dynamic range of the successive 
approximations q(i), we use as a second search 
direction 

As(O(i) = - w  (i) (2.11) 

along which we define a coordinate s. 
In the search plane defined by A,(o (° and At(O (/), 

the point with coordinates (s, t) represents the new 
iterate 

(f ' )  

i.e. 

(i+1) ) (os, t = ( O ( '  -F SAs(O(i) + tAt  (O(i), 

m(i+l) • ,, _ - ( l - s ) ( o ( O + t T , ( A , q ( ' ) / q ( ' ) ) .  ( 2 . 5 f ' )  

2.3.2.2. Directional derivatives. Through the expo- 
nential modelling relation (2.5b) defining a (i'÷l) in 

(i.l.l) the relative entropy ,9 o and the con- terms of (os., , 
straint c~ become numerical functions of the values 
of s and t used in the updating step (2.5f'), which 
we write as 

~ ,  :,~(,+l)~ S(s, t) (2.12) ~ls ,  t ) = 

c¢(^(i+1)~ C(s, t) (2.13) t/~,t ) = 

The evaluation of these functions and of their partial 
derivatives with respect to s and t proceeds as follows: 

(i) to evaluate S, use the expression 

_( i+ l ) ]  • -q~m(qs, t I = l o g / [ m ,  ws.t(i+l)l ~ / _ ( i + l ) j  \£~s,t , O'/S, f'(i+l)\':' (2.14) 

(ii) to evaluate C, follow steps (2.5b) and (2.5c) 
(i+l) and use the definition of ~ given in with w = Ws,, 

(2.10); 
(iii) to evaluate the derivatives of S, it is simplest 

to obtain directly the functional derivative V,o5 ° 
according to (2.9), i.e. 

v,og° = -  (oq + <q, (o)q, (2.15) 

and thus at a general point (s, t) 

d S / d s  = (Vo,9 ~, A,(o (')) 
__.[ . ( i ÷ l ) ^ ( i + l )  O.)(i)) 
- -  \ i O  S, t ['l s ,  t , 

(i+ .(i+l) ~( i+ l )  ¢o(i)) _~,q~., 1), w~,, )(,4~,, , (2.16) 

d S / d t  = (V.,Sf, At(o(i) ) 
__ . ( i+ l )  _ ( i ÷ l ) ,  Ato)(i)) 
- -  - - ( £ O s ,  t ~ s , t  

~(i+ . ( / ÷ l ) - / ~ ( i ÷ l )  +(q~., 1), w~,, )~q~,t , A,w(~)); (2.17) 

(iv) to evaluate the derivatives of C, note that the 
functional derivative Vq~ with respect to q is simply 
- Aq as defined by (2.5d'). Therefore, using (2.9), we 
get 

V w ~  = q V q C ~ -  (q, VqC~)q 

= - q A q  + (q, Aq)q (2.18) 
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and hence 

d C / d s  = (V~,c~, Asto(i) ) 

_ /~ ( i+ l ) a~ ( i+ l )  t o ( i ) )  
- -  \ t t s ,  t ZaCls, t , 

/_(i+1) A _ ( i + l ) \ / _ ( i + l )  
- - x e l s ,  t , " t t s ,  t / \ t t s ,  t , toCi)), 

dC / dt = (Vo,~, Afro (i}) 
_(i+l)A_(i+l), =-(,ts, ,  ~,t~,, a,to ~i)) 

/ _ ( i + l )  A~(i+l)\l~(i+l) (i)). 
-It- x t t s ,  t , ~"itts, t ]k i t s ,  t , A t t o  

(2.19) 

(2.20) 

2.3.2.3. Bicubic model and its solution. Since Atto (i) is 
a Newton direction for cg (see I, § 7.1.2) and since a 
unit shift along Asto(i) with t =0  would flatten the 
map, we can expect to find the optimum values of s 
and t within the unit square in the search plane; 
experience shows that it is most frequently contained 
in a much smaller region, typically 

0<s_<0.1,  0_< t_<0.3. 

We therefore select trial values of s and t (e.g. 
Stria~=0"l, tt~ia~=0"3) and compute the following 
quantities: 

S(0 ,  0), S(strial, 0), S (0 ,  ttrial) , S(strial , ttriai), 

dS/ds(O, O), dS/ds(s,~at, O), dS/ds(O, ttrial), 

dS/dt(O,O), dS/dt(stda~, 0), dS/dt(O, ttria~) (2.21) 

and similarly for C. These ten numbers attached to 
each function define uniquely a bicubic approxima- 
tion of the form 

S (s, t) ~ So + S1 s + $2 t + S11 s 2 + Sl 2st + S22s 2 

+ S111s3-~ t- S l l 2 S 2 t  + S 1 2 2 s t 2 +  $222 t3 (2.22) 

(and similarly for C), the correspondence between 
the two sets of numbers being given by a 10x 10 
matrix which is easily calculated and inverted so as 
to give the coefficients in (2.22) from the function 
and derivative values in (2.21). Once these bicubic 
models of S and C are set up they are evaluated on 
a 100 x 100 grid covering a 'trial patch' (which may 
include some slightly negative values of both s and 
t), and level curves of C are traced using the contour- 
ing algorithm of Diamond (1982). 

The optimization process then consists of 
(i) fixing a value Cal m Of C as a target for the 

current iteration, the ultimate target being Ca~'m = n/2  
if H contains n reflexions. Let Cc~r denote the current 
value C(0, 0) of C, C~xt the minimum (maximum) 
value of C in the trial patch if CaC~m ~ Ccur (CaC~m ~ 
C¢,~), and put 

= ~C~.~+ ~C~xt. Ctes  t 1 1 

Then Caim is chosen as follows: 

Caim : CaC~m if lCa~m- Ccur[ <- ]Ctest-  Ccurl, 

Caim--'~ Ctest iflCa~m-Cc.~l>-lC, o~,-C¢.rl; 

(ii) finding the point with maximum value of S on 
the level curve C = Cai m. This is done by following 
the corresponding contour and numerically interpol- 
ating the values of S along it. 

2.3.2.4. Damping factors, bumpers and other checks. 
When fitting constraints U* where certain U values 
are a substantial fraction of unity, further precautions 
are necessary to prevent divergent behaviour. These 
include 

(i) the dynamic range of the to map is kept within 
the limits -4.5<-to(x)<-4"5, which correspond 
roughly to 10 -2 <- q(x) -< 102; these limits may be over- 
ridden if desired; 

(ii) whenever division by q(x) is to be performed 
[e.g. at step (2.5d') above], the lower limit of the to 
map is reset to -2 .5  prior to this division; 

(iii) the trial values Stria I and ttriat are readjusted as 
a function of the contrast of the corresponding search 
directions, as follows: 

(a) the user supplies Smax (default: 0"1) and tma x 
(default: 0"5); these limits are never exceeded; 

(b) the value of Stria~ is obtained as 

Stria I : min ( S m a x / m a x  Ito">(x)l, Smax) ;  
x 

(c) the value of/trial is obtained in two steps via 

ttemp=min (tmax/max A,toci)(x)l, tmax), 
x 

ttrial : man (r/llza,to<')ll~, ttemp), 

where Ila:o '>ll  is the length of Atto (i) in the entropy 
metric 

IIA,to">ll - - $ IA,to">(x)l = q(x)d3x (2.23) 
v 

and r is a parameter with a default value of 0.04 
which may be overridden; 

(iv) once the plane search has yielded the desired 
correction, expressed in terms of ~'s, a temperature 
factor may be applied to it so as to attenuate its 
high-frequency component; 

(v) the collinearity of the gradients Vb D and Vet 
may be monitored by computing the cosine of the 
angle between them. 

In this form, the plane search algorithm is fast 
(reaching a solution in less than 20 cycles, and less 
than 10 cycles for a small basis set) and extremely 
robust. It does not always produce as good a col- 
linearity of gradients as that described in I, § 7.2, but 
this has not so far seemed to be a limiting factor in 
its usefulness. 

In the early stages of the calculation, the plane 
search may be simplified into a more economical line 
search using only the t direction, without loss of 
robustness. This simpler search, however, does not 
allow one to follow a level curve of c¢ to locate the 
maximum of ,9° on that curve. 



G. BRICOGNE AND C. J. GILMORE 293 

2.4. Likelihood evaluation 
To test the hypothesis (H~) that UH = U* against 

the hypothesis (H0) that UH = 0, we use the observed 
moduli ]UKI °b~ for the collection K of reflexions 
where the maximum-entropy extrapolation creates 
the strongest moduli u ~ E ;  the optimal K for this 
purpose was shown in I, § 4.2.2 (see also III, § 4, for 
a detailed derivation) to coincide with the 'second 
neighbourhood' of H as defined by Hauptman (1980). 

Having chosen K in this way, we combine the 
expressions of § 1.4 for the likelihoods in the diagonal 
approximation with the use of the ~ parameters intro- 
duced in (2.10). This allows a treatment of the 
measurement errors present in the moduli data IUK [ °bs 
and also absorbs the effect of systematic computa- 
tional errors due for instance to aliasing (which is 
unavoidable because of the numerous non-linear 
operations performed on the various Fourier maps). 

For k acentric, we put 

a ( U * l l  U,,I = ]Ukl °bs) 

]Uk °bS { I(uk°b~)2+JuME2"[ 

-- ~kZa + O'~ exp _ - ~  ek2a + 0-~ J 

( Uk °b~ !urE"~ (2.24a) 
x I0 ekZo + o'~, ,] 

while 
A(OII U,,I = I U,,l°b9 

Uk °b~ { l(Uk°b~)2l 
--ekZ~+O "2exp 2 e ~  J (2.24b) 

We refine the Za parameter separately for the two 
hypotheses by a simple Newton method so as to 
maximize the global l ikelihood A calculated over all 
the subset K~ of K consisting of acentric reflexions. 
The necessary derivatives are calculated in the 
Appendix. This refinement is carried out separately 
for the two hypotheses, so that the test uses the 
log-likelihood 

La =log maxz° A(U*H IUKoI = IUK~I°b9 (2.24C) 
maxz~,, A ( 0 1 I u ~ . I = I u ~ . I ° ~ 9  " 

Similarly, for k centric, 

A(U II Ud = I ud°b9 
[ 2 ]1/2 ( l(Uk°bs)Z+Ju~E2"[ 

= 'n'(ek.,~+0-~) exp --~ e - - - ~ + ~  J 

× cosh - ( uk°bs uME ~ (2.25a) 

while 

A (01t ukl = I Ud°b9 
[ 2 ],/2 { 1 (UkObS)Z], 

: 7r(ek£ + 0-~) exp 2 e ~ , ~ - - ~ J "  
(2.25b) 

Here too the parameter ~c is refined separately for 
the two hypotheses so as to maximize their likelihood, 
and the test uses the log-likelihood 

maxz~ A ( u *  I Iu,,cl = 1u,  l 
Lc=l°g max~cA(0IIUK, I lUKe = lobs ) , ( 2 . 2 5 c )  

where K~ is the subset of centric reflexions in K. 
The global criterion for testing (H0) against (H1) 

in view of all the data in K is then 

L= La + L~. (2.26) 

2.5. Likelihood optimization for phase refinement 
After L has been calculated pointwise for several 

sets of trial structure-factor values U*,  it is natural 
to seek to improve the trial phases by maximizing L 
with respect to them (§ 1.5). We have implemented a 
first version of such a procedure, which will now be 
described. 

In the diagonal approximation, the log-likelihood 
function L for hypothesis (H1) is a sum of separate 
contributions from each reflexion k in the second 
neighbourhood K. Thus for each k we can calculate 
the complex partial derivative 

OL/oU~E=[oL/O u ~ E ] e x p ( i q ~  E) (2.27) 

(full expressions for these derivatives can be found 
in the Appendix). These numbers are the components 
of the gradient of L with respect to the components 
of U~ E. To obtain a Newton direction from this 
gradient we divide the component belonging to each 
k by ek2; + 0 -2 (with Z = Za or ~c according to k), 
which is a crude approximation to the curvature 
a2L/a u~E] 2. A set of Fourier coefficients is thus 
obtained, from which a map (ALq)(x) can be calcu- 
lated. We then use the standard method of division 
by q and spectrum truncation to 'pull back' ALq into 
a search direction in to space: 

ALto = rn(ALq / qME). (2.28) 

This direction is in turn converted into suggested 
changes to the structure-factor values U*H by Fourier 
analysis according to 

AU*H = J qME(x)(ALto)(X) exp (+27rih. x) d3x. 
v (2.29) 

The phases of U*+wzaU* are then applied to the 
moduli U*H (with w a scale factor which may be 
used to prevent excessive changes), thus completing 
the phase-refinement process. 

3. Strategy 
3.1. Overview 

The practical task of constantly updating the distri- 
bution of atoms q(x) to the maximum-entropy distri- 
bution compatible with the phase choices made at 
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each stage requires a book-keeping scheme capable 
of recording these various phase choices and the 
parentage relations between them - in other words, 
of representing all the phasing paths one may wish 
to explore. For this purpose it is convenient to use a 
multisolution tree (I, §§ 2.4, 8.1; III, pp. 73-75). 

3.1.1. Growth of the multisolution tree. Let the 
nodes of this multisolution tree be labelled by the 
index u, let Hv denote the set of 'basis' reflexions (i.e. 
of reflexions for which trial phase values are being 
treated as free parameters) attached to that node, and 
let Kv denote the second neighbourhood of H~. The 
overall strategy then goes as follows (I, § 8.1). The 
root node (labelled u -- 1) of the tree consists of the 
set H~ of origin-fixing and enantiomorph-defining 
reflexions. The subsequent growth of the tree is gov- 
erned by the following sequence of computations at 
each node v: 

(a,) update the prior distribution of atoms q(x) to 
the maximum-entropy distribution qME(x) compat- 
ible with the phase choices (giving rise to structure- 
factor values U*H,) attached to that node; 

(b~) construct the conditional distribution 
SP 

~bdiag(UK~ ' [UH~ ' = U ~ , )  of the yet unphased structure 
factors in K~; 

(c~) construct the likelihood function 
A ( U ,  m ]Um[=[ U obs~ by integrating the condi- 
tional distribution over the unknown phases and sub- 
stituting the observed values of the moduli in K.; 

(d.) refine the basis phases in U *  by maximizing 
A with respect to those basis phases; 

(e.) solve the local branching problem for (i.e. 
identify the local maxima of) the conditional distribu- 
tion with respect to a subset of unknown phases when 
the values of the corresponding moduli are intro- 
duced; 

(f~) expand the current node by creating a branch 
leading to a new tip node for each of these maxima; 
if the conditional distribution is too flat for (e~) to 
be meaningful, just carry out some phase permuta- 
tion; in both instances the current node v generates 
a certain number m~ of daughter nodes 
(v (~), v(2), . . . ,  v(~); each such node has an enlarged 
basis set H~(,,, Hv,2, , . . . ,  H,(,,,~, with associated trial 
structure-factor values * U* * U H , , ( I ) ,  H ~ 2 ~ ,  • • • , U H , , (  . . . .  ) ,  

and process (a.) may be applied to each of them. 

3.1.2. Optimal scheduling of tree growth. The multi- 
solution tree would quickly grow to an unmanageable 
size, and its growth must be supervised so as to 
maximize the chance of finding the correct set of 
phases without having to develop too many of its 
spurious branches. For this purpose, we may use two 
criteria at each node u: 

(i) the loss of entropy ,gOm(q ME) in going from a 
uniform distribution of atoms m (x) = 1/V to the cur- 
rent non-uniform qME(x); according to Shannon 

(Shannon & Weaver, 1949), this measures the shrink- 
age of the population of 'reasonably probable struc- 
tures' when the constraints U *  are enforced; 

(ii) the likelihood A(U*~IIuK~]-- obs Iu,,~l ), which 
measures the degree to which the phase choices made 
in U *  are able to anticipate correctly, through their 
maximum-entropy extrapolation, some of the infor- 
mation present in the yet inactive constraints and 
hence measures the 'chances of survival' of the current 
node in the face of these forthcoming constraints. 

Intuitively, the entropy of a node measures the 
'girth' of the branch directly leading to it from the 
root node, while its likelihood is an estimate of the 
sum of the girths of the branches bifurcating away 
from that node once the values of the unphased 
moduli in its second neighbourhood are taken into 
account. One would thus expect likelihood (which 
looks 'ahead' at the degree of pre-established har- 
mony between its predictions and the actual observa- 
tions for the yet unphased data) and entropy (which 
looks 'back' at the cost of accommodating the current 
phase assumptions) to be complementary measures 
of the worth of a trial phase set. 

It is this very analysis which is embodied in the 
criterion (1.18) defined in § 1.5 on the basis of Bayes's 
theorem. This combined criterion, calculated with N 
replaced by 112c ~-1/2~,  can therefore be used as 
a score to determine the priority with which each 
node will be considered for further growth in step 
(f),  thus affording an optimal scheduling of the 
growth of the multisolution tree. 

3.2. Principles of operation 

We will now examine in detail the procedures used 
in each of the above steps. Programming and practical 
considerations are dealt with by Gilmore, Bricogne 
& Bannister (1990). 

3.2.1. Origin and enantiomorph definition. The 
direct-methods program MITHRIL (Gilmore, 1984; 
Gilmore & Brown, 1988) is used to select those 
reflexions which optimally define the origin and enan- 
tiomorph. We have however found that the present 
phasing strategy is much more effective if an extra 
resolution criterion is used (in conjunction with the 
usual [El-magnitude criterion) to choose these 
reflexions: if relatively strong reflexions are present 
at low resolution, even though they may not have the 
strongest [El values, they should be incorporated 
preferentially into the initial basis set H~. A plausible 
explanation of this behaviour is that the conditional 
distributions of the phases of strong high-resolution 
reflexions are less multimodal (hence make the 
branching problem more tractable) if the non-unifor- 
mity in q(x) has been created by low-resolution con- 
straints rather than by other high-resolution terms 
(see § 1.2.2). 
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3.2.2. Updating to a maximum-entropy distribu- 
tion. Step (a) is carried out by the method described 
in 8 2.3, involving bicubic modelling and plane 
search. We have found this algorithm extremely 
robust and capable of dealing with U values close to 
unity. 

3.2.3. Conditional distributions. At step (b), the 
conditional distributions of the structure factors in 
K, (in the diagonal approximation) are calculated 
by the explicit formulae given in 8 1.2.4. Centroid 
values for these structure factors may be calculated 
as described in 8 1.6 and used to calculate a map for 
visual inspection. 

3.2.4. Likelihood functions, ,~ refinement. Step (c) 
uses the expressions (2.24), (2.25) and (2.26) derived 
in 8 2.4 for the likelihood functions in the diagonal 
approximation. The second neighbourhood K~ of the 
current basis set H, is generated and the values of 
Za and Zc are refined by a Newton method. A weigh- 
ted average of 1/Z¢ and 1/2Z~ is subsequently used 
as a substitute for the number of atoms N in all 
formulae involving N. 

We have found the likelihood criterion to be of 
immense power in ranking trial phase sets, even at 
very early stages when none of the existing figures of 
merit used in traditional direct methods would give 
any useful indications. As phasing progresses, the 
correct node rapidly emerges above the others, its 
likelihood being orders of magnitudes greater. 

3.2.5. Phase refinement. Step (d) is based on the 
principle outlined in 8 1.5 and is carried out by the 
algorithm described in 8 2.5. 

This new" method of phase refinement has proved 
extremely effective, even with very small basis sets 
which would in no way lend themselves to a tangent 
refinement. 

3.2.6. Survey of branching behaviour. As explained 
in 8 1.2.4, the diagonal approximation destroys the 
multimodality of conditional distributions, and thus 
the expressions set up at step (b) are unsuitable to 
carry out step (e). For the latter purpose, we use the 
real-space expression (1.4) of the full conditional 
distribution for the structure factors. 

In order to survey this c.p.d, with respect to as 
many new phases as possible, we use the magic- 
integer technique (White & Woolfson, 1975; Main, 
1977) to encode several phases into fewer numerical 
symbols. The integral ~V{[6q(x)]2/qME(x)}d3x is 
calculated for each point of a grid of simultaneous 
values of these symbols, and its minima (correspond- 
ing to the maxima of the c.p.d.) are located. Absence 
of contrast at this stage is usually a sign that the 
current basis set is a bad choice, and that backtracking 
to another node of the tree is advisable. If no better 
node can be identified, simple-minded phase permu- 
tation is used to create the daughter nodes, whose 

ranking must then await the evaluation of the likeli- 
hood criterion at the next round. 

This method of surveying the multimodality of the 
c.p.d, has proved an effective and reliable one, and 
an essential aid in controlling the phasing process. 

3.2.7. Expansion of the basis set. At steps (e) and 
(f) ,  it is of vital importance to exercise great care in 
choosing the set of new reflexions with respect to 
whose phases the branching behaviour will be sur- 
veyed. Choosing those reflexions where the strongest 
ME extrapolation takes place always leads to an 
impasse, undoubtedly because the phasing process 
becomes over-consistent on a strongly coupled subset 
of the data, and is then unable to incorporate any of 
the information present in the rest of the observations 
(this is a well known phenomenon in tangent 
refinement). We have found that the correct strategy 
for expanding the basis set consists of choosing those 
strong reflexions for which no strong extrapolation 
has yet taken place, i.e. whose strength is maximally 
unexpected to the current statistical model. For equal 
degrees of unexpected strength, the preferential 
choice of low-resolution vs high-resolution reflexions 
is helpful, for the same reason as explained in 88 1.2.2 
and 3.2.0. 

3.3. Meaning of Z 

The use of an empirical and refinable parameter Z 
(calculated as the weighted average of 1/Z¢ and 
1/2Za) instead of the number of atoms N deserves 
further comment. As defined in 8 2.3.2 and used in 
8 2.4, 2 measures the statistical dispersion of the 
distribution of the observed moduli, taking into 
account the modulation of the latter by ME extrapola- 
tion from the basis set of reflexions (8 1.3). 

If q(x) is the uniform distribution, Z measures the 
dispersion of the unphased [E[ values around their 
root-mean-square value of 1.0. If the atoms in the 
structure at hand are not truly statistically indepen- 
dent at the working resolution but occur as 'globs' 
(Harker, 1953), then the refined value of Z will be 
greater than 1/N, being roughly the inverse of the 
number of such globs rather than of the number of 
atoms. This phenomenon has actually been observed 
in the course of the direct phasing of contrast vari- 
ation data from a protein crystal at low resolution, 
and the size of the globs thus indicated correlates 
well with the existence of a sharp maximum in the 
radial intensity distribution at about 10.5 ,~ resolution 
(Carter, Crumley, Coleman, Hage & Bricogne, 1990). 
The quantity 1/Z is thus Neff, the 'effective N '  defined 
in I, 8 8.3, and this observation corroborates the con- 
clusion reached there that the potential strength of 
statistical phase relations should be gauged from the 
value of Nen rather than of N. Our practice of using 
Z rather than N guarantees that this effect is 
automatically taken into account. 
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At the other extreme, when a great deal of correct 
phase information has accumulated at certain nodes, 
the ME extrapolation becomes more and more exact, 
as the Toeplitz determinants approach zero (Goed- 
koop, 1950). In these circumstances the parameter 27 
refines to values much smaller than I/N, but as the 
U values are not renormalized the effect is to make 
the conditional distributions much sharper, and phase 
extension much stronger. We have repeatedly 
observed this 'critical behaviour' of 27, which is 
accompanied by soaring values of the log-likelihood 
of the correct node, to be an indication that the 
phasing process has reached successful completion. 

S u m m a r y  

We have examined in detail a previously proposed 
multisolution strategy for direct phase determination 
by combined maximization of entropy and of likeli- 
hood, as well as the theoretical results and the com- 
puter algorithms on which its implementation is 
based. Increasingly specific phase assumptions are 
made as part of a tree-directed search. For each such 
assumption, saddlepoint approximations to joint and 
conditional probabilities of structure factors are 
calculated by means of maximum-entropy distribu- 
tions of atoms which are obtained by a robust plane- 
search algorithm. A likelihood criterion is constructed 
for testing phase assumptions in the light of the 
observed distribution of the yet unphased moduli. 
Different trial phase sets are ranked according to a 
criterion combining entropy and likelihood according 
to Bayes's theorem, and the phases are refined by 
optimizing this criterion. Finally, the ambiguity inher- 
ent in the process of phase extension (the 'branching 
problem') is explicitly surveyed by evaluation of a 
real-space expression which has a simple interpreta- 
tion in terms of a differential cost for the creation of 
new detail, and the search tree is expanded accord- 
ingly. This procedure works best if initiated at low 
resolution and if allowed to progress to higher resol- 
ution only gradually, and this behaviour can be 
rationalized within the proposed theory. Practical 
applications are described by Gilmore, Bricogne & 
Bannister (1990). 
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(to CJG); subsequent work in Glasgow was supported 
by a grant from the SERC (to CJG). GB acknowledges 
support from CNRS (France) and partial support 
from Trinity College and from the MRC Laboratory 
of Molecular Biology (Cambridge, England) during 
the course of this work. 

A P P E N D I X  " 

We will collect here the expressions for the derivatives 
of the log-likelihood contributions of individual 

reflexions in the diagonal approximation which are 
used in the Newton refinement of the 2 parameter 
(§§ 2.4, 3.2.3) and in constructing the search direction 
for phase refinement (§ 2.5). 

A.1. Acentric case 
Put r = U ME , R = Iukl  °bs, 27 = ekXa + e = to  

simplify the notation. The log-likelihood contribution 
is (§ 2.4) 

Lo(r, R, 2 )  = log R - l o g  27-½(r2+ R2)/2 

+log lo(rR/27). ( a l )  

It is convenient to write r, for the quotient In/I0 of 
modified Bessel functions. If differentiation is 
denoted by a prime ('), the recurrence relations for 
Bessel functions then give the relations 

(log lo)'(z)-- rl(z), r~(z)-- 1 - - r l ( Z ) / Z - - [ r l ( Z ) ]  2. 

(A2) 

We may then calculate the required derivatives as 

aLa r 

or 27 

aLa e e r2+ R 2 

- -  "~ 2 7 2  02~ 2, 2 
OZL,, 8 2 r2+ R 2 
a27~ - +~--~ - e ~  27~ 

+~- r l  , (A3a) 

erR (r i f )  272 rt , (A3b) 

{erR] 2 ,{ rR'~ 

2e2rR (rR) 
+ T r ~  ~ . (A3c) 

The first of these is involved in the gradient of § 2.5, 
while the latter two determine the shift A27,, of 27a in 
a Newton refinement step via 

/ 10% 
A2,.=-k~EK \'-6-~Jk/ k~Eg \0---~]k (A4) 

k a c e n t r i c  k a c e n t r i c  

Should this shift result in a negative value of Xa, 
it can be converted into a shift of log 27,~ so as to 
preserve positivity (K. Henderson, personal com- 
munication). 

A.2. Centric case 

With the same abbreviations as before, but with 
X =ekZc+o  "2, the log-likelihood contribution is 
(§ 2.4) 

1 2 1 Lc(r, R , ~ ) = ~ l o g - - - ~  logX 

2 27 t-log cosh . (A5) 

Writing r(z) for the function tanh (z), we have 

(log cosh) '(z)= r(z), r ' ( z )=  1 - [ r ( z ) ]  2, (A6) 
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hence the derivatives: 

- -  - - - -  + - - 7 "  

Or Z Z ' 

O .S, Lc _ 2 ze + 2e r 2 + R 2 e r 2 7- ( r--ffff ) 

O2Lc e 2 2 r 2 + R  2 ferR~ 2 (r__ff~) 
7-' 

(A7a) 

(A7b) 

+ - - ~  7- . (A7c) 

These derivatives are used as described in the acen- 
tric case. 
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Abstract 

The approach described by Bricogne & Gilmore [Acta 
Cryst. (1990). A46, 284-297] (I) is applied to three 
small organic molecules. Phase extension for sucrose 
o c t a a c e t a t e  (C28H38019) from a basis set of 300 cor- 
rectly phased U magnitudes confirms the stability 
of the exponential modelling and plane-search 
algorithms under very demanding conditions; the 
extrapolated phases are of comparable quality with 
those produced by the tangent formula, although it 

is possible, by overfitting the observed and calculated 
U magnitudes, to obtain results that are better 
than tangent refinement. The ab initio phasing of two 
small molecules, one (diamantan-4-ol, Cl4H2oO ) 
centrosymmetric and the other [(-)-platynecine, 
CsHIsNO2] non-centrosymmetric, shows that the 
likelihood function is a more powerful discriminator 
between phase choices than any figure of merit 
hitherto available in conventional direct methods; 
correct discrimination of phase sets arising from 
phase-angle permutation is readily achieved even in 
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